기사 메일전송
  • 기사등록 2019-07-09 11:59:11
기사수정


▲ 울산과학기술원(UNIST) 전기전자컴퓨터공학부 고성안 교수(오른쪽) 연구팀이 인공지능 기술을 이용해 교통정체의 원인을 파악하고, 특정 도로의 가까운 미래 상황을 예측해 시각화하는 시스템을 개발했다.



[기계신문] 교통정체는 여러 대도시에서 발생하는 현대사회의 고질적인 문제이며, 삶의 질을 떨어뜨리는 여러 요소 중 하나다. 교통정체 문제를 해결하기 위해 정부 차원에서 시도별 지자체에 ‘지능형 교통체계(ITS, Intelligent Transport System)’를 설치하고 데이터를 축적해왔다.


ITS는 교통수단과 교통시설에 전자제어와 통신 등 첨단기술을 접목해 교통정보를 생성하고 운용하고 활용하는 시스템이다. 대표적인 사례가 버스 정류장에서 원하는 버스의 도착 시간을 안내받을 수 있는 서비스다.


지자체마다 수집한 실시간 교통 데이터를 기반으로 분석하면 정체가 발생하는 지점과 시간, 원인을 파악할 수 있다. 이를 기반으로 교통정체를 예측하고, 이 정보를 운전자에게 직접 전달한다면 삶의 질을 높이는 데 기여할 수 있다.


그러나 복잡한 대도시 도로망에서 생성되는 대용량 교통 데이터에서 정체 패턴을 파악하고 분석하는 데는 까다로운 기술이 필요하다. 또한 10분이나 15분 후처럼 가까운 미래에 벌어질 교통정체나 도로 상황을 예측하는 작업은 생각만큼 쉽지 않다.


그런데 최근 5~15분 뒤에 일어날 도로 상황을 예측해 시각적으로 보여주는 인공지능 기술이 개발됐다. “차량이 가다 서다를 반복하고 있습니다”라는 익숙한 교통안내가 “5분 뒤 시속 40km/h로 이동 가능합니다”처럼 구체적으로 바뀔 전망이다.


울산과학기술원(UNIST) 전기전자컴퓨터공학부 고성안 교수 연구팀이 인공지능 기술을 이용해 교통정체의 원인을 파악하고, 특정 도로의 가까운 미래 상황을 예측해 시각화하는 시스템을 개발했다.


미국 퍼듀대와 애리조나주립대와 공동으로 개발한 이 시스템은 2019년 과학기술정보통신부, 한국정보화진흥원의 데이터플래그십 사업에 선정됐으며, 연말에는 광주와 대전, 부산, 인천에서 교통방송(TBN)을 통한 정체 예측 방송에 활용된다. 뿐만 아니라 국민 누구나 예측된 정체상황을 확인하고, 운전에 활용하도록 도시교통정보센터(UTIC) 웹사이트에서 온라인으로 서비스할 예정이다.


고성안 교수는 “각 시·도 지자체에서 지능형 교통체계(ITS)를 구축하는 등 다양한 방법으로 교통 정보를 수집해 왔지만, 대량의 데이터를 분석하고 가까운 미래의 교통상황을 예측하는 데는 한계가 있었다”며 “이번에 개발한 시스템은 기존 확률통계 분석에 딥러닝 기술을 도입해 특정 도로구간에서 15분 후에 벌어질 교통상황을 평균 4km/h 내외의 오차로 예측 가능하다”고 설명했다.



▲ 울산과학기술원(UNIST) 전기전자컴퓨터공학부 고성안 교수 연구팀이 개발한 시스템은 광역시급 도시 전체 도로망의 정체 데이터 분석, 모니터링 및 예측을 가능하게 한다.



새로운 시스템은 크게 두 개의 모듈로 이뤄진다. 하나는 교통상황을 분석하고 예측하는 모듈이고, 나머지 하나는 결과를 시각화하는 모듈이다.


교통상황을 예측하는 모듈은 여러 도로 사이의 인과관계를 계산하고, 딥러닝(Deep Learning)을 기반으로 교통 정체를 예측한다. 기존에는 특정 도로의 과거 통행량을 확률통계기법으로 분석했는데 정확도가 낮았다. 연구팀은 확률통계기법에 현재 상황을 종합적으로 고려하는 딥러닝 기술을 도입했다.


특정 구간의 과거 평균 이동속도는 물론, 도시의 도로망과 주변 도로의 정체상황, 러시아워(Rush hour) 정보 등을 함께 학습시킨 것이다. 이 기술을 이용해 울산시 교통정보를 분석한 결과, 특정 도로의 평균 이동속도를 4km/h 내외의 오차로 예측할 수 있었다.


연구에 참여한 이충기 UNIST 컴퓨터공학과 석박사통합과정 연구원은 “특정 도로가 막히는 상황은 주변 도로에 영향을 끼친다는 점에 착안해 알고리즘을 짰다”며 “과거 데이터와 실제 벌어지는 상황을 함께 학습하면서 예측하기 때문에 기존 방식보다 예측 정확도가 높아진다”고 설명했다.


도로 상황을 분석하고 예측한 내용은 ‘브이에스리버스(VSRivers)’라는 시각화 기술로 표현된다. 이 기술은 도로별로 통행하는 차량 수와 평균 이동속도를 한눈에 보여준다. 현재 정체되는 도로에서 정체가 시작된 지점과 향후 도로상황이 어떻게 전파될지 예측한 모습까지 색깔과 도형을 이용해 직관적으로 나타낸다.


고성안 교수는 “새로운 데이터 시각화 기술은 도시교통정보센터(UTIC) 웹사이트에 구현해 누구나 쉽게 도로 교통상황을 파악하도록 할 것”이라며 “대량의 교통 데이터를 제대로 활용할 수 있는 이 기술은 교통정체 예보 방송이나 내비게이션에 연동해 최적의 경로를 찾는 데 활용 가능하다”고 밝혔다.


그는 이어 “데이터 분석과 예측 기술은 물론 시각화까지 가능해 누구나 쉽게 이용하도록 했다”며 “인공지능 기술이 도입된 새로운 시스템은 현대사회의 고질적인 문제인 교통체증을 줄이고 삶의 질을 높이는 데 기여할 것”이라고 기대했다.


이번 개발 시스템의 기대효과는 크게 다섯 가지로 꼽을 수 있다. 먼저, 대국민 온라인 정체 예보 서비스가 가능해진다. 시민들에게 교통상황과 정체예측 서비스를 온라인으로 제공해, 교통체증을 해소하고 삶의 질을 높일 수 있다.


두 번째로 교통정체에 선제적이고 능동적으로 대처할 수 있다. 교통정체 관련 유관기관과 협력해 원할한 도로환경을 만들 수 있을 것으로 기대되며 실제로 경찰청과 신호 제어 관련해 활용할 방안도 논의하고 있다. 세 번째는 효율적인 교통 데이터 분석이다. 교통정체와 교통량 등의 데이터를 기초 자료로 삼고 도로망을 개선하거나 정비에도 활용 가능하다.


네 번째로는 교통정체 예보 방송 서비스도 가능하다. 기존에 시행되는 현재 정체된 구간을 알려주는 방송에 더해 가까운 미래의 특정 도로별 교통정체 예측방송이 가능해진다. 여기에는 통행 가능한 구체적인 속도까지 제시할 수 있어 활용도가 높을 전망이다.


마지막으로 내비게이션 서비스에 활용하는 방향도 가능하다. 현재 정체상황을 파악해 목적지까지 도착시간을 계산하는 방식은 도착지에 다가갈수록 시간이 늘거나 줄어드는 경우가 많다. 내비게이션에서 도착시간을 계산할 때 예측된 정보를 활용하면 정확한 도착 시간을 파악하는 데 도움이 된다.


한편, 이번 연구는 과학기술정보통신부와 한국정보화진흥원의 ‘데이터 플레그십 사업’을 통해 이뤄졌으며, 2016년부터 도로교통공단과 경찰청, 울산교통방송국(TBN), 울산시청 교통정책과, 울산교통관리센터 등 유관기관 전문가들과의 지속적으로 협업해온 성과다.


연구 결과는 ‘전기전자공학회 시각화와 컴퓨터그래픽(IEEE Transactions on Visualization and Computer Graphics)’에 출판될 예정이며 온라인으로 미리 공개돼 열람 가능하다. 논문명은 ‘A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion’이다.


이은아 기자 lena@mtnews.net

관련기사
TAG
기사수정

다른 곳에 퍼가실 때는 아래 고유 링크 주소를 출처로 사용해주세요.

http:// mtnews.net/news/view.php?idx= 6472
기자프로필
나도 한마디
※ 로그인 후 의견을 등록하시면, 자신의 의견을 관리하실 수 있습니다. 0/1000
서브우측_글로벌자동기기
서브우측_드라스타
서브우측_유성분체기계
서브광고_우일산업
서브광고_우진테크
서브광고_영기풀리미
서브광고_에이티컴퍼니
서브우측_태진기전
모바일 버전 바로가기