▲ 양자 정보기술의 핵심은 고효율 ‘양자 광원(quantum light source)’을 생성하고 제어하는 기술로, 이를 실현할 연구가 나왔다. (좌측부터) 문종성 연구원, 김효주 연구원, 김제형 교수


 
[기계신문] 울산과학기술원(UNIST) 자연과학부 김제형 교수 연구팀이 원자 한 개 수준의 두께를 갖는 아주 얇은 ‘이차원 반도체 물질’과 부분적으로 힘(strain) 제어가 가능한 ‘실리콘 미세 소자(MEMS)’를 결합해 ‘양자 광원’의 위치와 파장을 동시에 제어하는 데에 성공했다.

제어 가능한 다수의 양자 광원은 광자 기반의 양자 컴퓨팅, 양자 통신, 양자 계측 등 다양한 양자 기술에 쓰인다. 따라서 이번 연구결과는 연산 속도와 보안성, 정확성을 기존보다 높일 양자 정보기술 시대를 앞당길 것으로 주목받고 있다.

양자 광원은 전자의 스핀이나 초전도 전류처럼 양자 정보 처리의 기본 단위인 ‘큐비트(Qubit)’를 구현할 수 있다. 큐비트는 양자 상태에서 1과 0이 중첩되거나 얽히면서 정보를 표현하는 단위로, 0과 1로 정보를 표현하는 기존 정보 처리의 단위인 비트(bit)보다 발전된 개념이다.

기존 정보 처리 기술의 핵심이 다수의 비트를 구현하는 ‘반도체 집적소자’이듯, 실용성 높은 양자 정보 처리를 위해서는 큐비트를 생성하고 제어하는 기술이 핵심이다.

더 많은 정보를 동시에 처리하기 위해서는 더 많은 큐비트가 집적돼야 하고, 큐비트 간 상호작용을 일으키기 위해서는 각 큐비트의 특성이 동일해야 한다. 따라서 광자(빛) 기반의 양자 정보기술을 상용화하려면, 실제 소자(chip) 위에 다수의 단일 양자 광원을 동시에 생성하고 제어하는 기술이 필요하다.

기존에는 아주 작은 양자점을 성장시켜 여러 개의 양자광원을 만드는 기술을 사용했다. 하지만 이 경우에는 광원의 위치와 파장을 균일하게 조절하는데 어려움이 있다.

연구팀은 스카치테이프를 이용해 얇은 반도체 박막(WSe₂, 텅스텐 디셀레나이드)을 만들고, 이를 피라미드 구조가 규칙적으로 배열된 실리콘 MEMS 소자에 연결하는 방법을 이용해 광원의 위치와 파장을 동시에 조절하는데 성공했다. 원자층 두께를 갖는 얇은 반도체 물질은 미세한 구조물(피라미드)에 의해 ‘양자화’될 수 있다는 점에 착안한 것이다.

▲ (왼쪽) 국소 응력 제어를 위한 실리콘 MEMS 구조와 결합된 이차원 반도체(WSe2) 물질 모식도 (오른쪽 위) WSe2 단일 원자층 물질이 나노 피라미드와 결합되어 있는 전자 현미경 사진 (오른쪽 아래) 전기장으로 제어 가능한 실제 양자 광소자 시료 사진

피라미드 구조의 뾰족한 꼭짓점에 집중된 힘은 반도체 물질의 전자에너지 구조를 변형시켜 단일 양자광원을 만들어 낸다. 즉 피라미드 구조의 위치를 옮기면 양자 광원의 위치도 자유롭게 바꿀 수 있다. 양자 광원의 파장은 꼭짓점에 집중되는 힘의 크기에 따라 달라지는데, 이 힘은 실리콘 MEMS 소자 외부에서 전기로 제어 가능하므로, 양자 광원의 파장도 원하는 대로 조절할 수 있다.

김제형 교수는 “반도체 기반 양자 광원의 위치와 파장을 제어하는 기술이 많이 제시됐지만, 이를 하나의 소자 내에서 동시에 제어하는 기술은 난제로 남았다”며 “이번 연구가 다수 양자 광원 기반의 양자 광학 연구에 도움이 될 것”이라고 전했다.

▲ (왼쪽) 매우 좁은 선폭을 갖는 단일 이차원 반도체 양자 구조 발광 스펙트럼 결과 (가운데) 광원의 양자 광학적 특성을 보여주는 이차 상관 관계 그래프. 그래프 가운데 부분이 내려가는 특성이 단일 광자원임을 나타낸다. (오른쪽) 시료의 국소 응력을 전기장으로 변화(Y축)시켜 가며 반도체 양자광원의 파장(X축)을 실시간 제어한 결과

이번 연구는 기존 고체 양자광원의 문제점 해결책 제시와 함께 하나의 칩 안에 동일한 광학 특성을 갖는 다수의 양자광 집적 소자 개발 가능성을 보여줬다. 해당 기술은 다양한 양자 광학 연구를 고체 시스템에서 구현할 수 있는 플랫폼 개발과 함께 다수의 양자광원을 기반으로 하는 양자 시뮬레이터, 양자 이미징 등에 응용 가능할 것으로 보인다.

한편, 이번 연구는 과학기술정보통신부와 한국연구재단의 신진연구사업, 정보통신기획평가원 IT·SW융합산업원천기술개발 사업을 통해 이뤄졌으며, 국제학술지 나노 레터스(Nano Letters) 9월 9일자 온라인 속보로 게재됐다.

관련기사